If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(k^2-4)=0
We multiply parentheses
6k^2-24=0
a = 6; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·6·(-24)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*6}=\frac{-24}{12} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*6}=\frac{24}{12} =2 $
| x-2=-2x+1 | | 1-(12/a)=13 | | 6k^2-3=2k | | 2x=0,36 | | 3k^2=3 | | 64=4k^2 | | 2x^2=17x-6 | | -4x+23=5(3x-3) | | x-23=3(2x-5)-3 | | 3x+(x÷3)=160 | | k^2-6k+27=0 | | 2(5+x)=12x-120 | | 2(5+x)=12x-120 | | 6x-6x^2=12x | | 13/14=26/c | | 9x-13=2x-48 | | 7x-2x-5x=15-1+5 | | f)10)=3(10)-7 | | X+3x+28=176 | | -2(d-2)=2d-20 | | 3(t+2)=16 | | x^2+11x30=0 | | 13-3x=7x-2 | | 2x+40=5x-20 | | -2q(4q-9)=q(-8q+15)-3(-4q-6) | | -5x-40=4(x-1) | | -2(d-2)+4=2d-20 | | 8l-16=1+12 | | 2x-24=2(2x-3) | | 5u=2u-6 | | k^2=7k+30 | | x*(-4)=-68 |